Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Braz. j. med. biol. res ; 53(7): e8763, 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132529

ABSTRACT

Upper limb performance is affected by diabetes mellitus (DM). Neuromuscular junction (NMJ) is a key structure to understand the relationship between performance and morphology in DM. The aim of the study was to analyze NMJ plasticity due to DM in an animal model and its relationship with the function of forelimbs in rats. Twelve Wistar rats were divided into control (C) and DM groups. Animals were trained to perform a grasping task, following procedures of habituation, shaping, and reaching task. DM was induced using streptozotocin. Forelimb neuromuscular performance for dexterity was evaluated one day before DM induction and five weeks following induction. After that, biceps, triceps, and finger flexors and extensors were removed. Connective tissue and muscle fiber cross-sectional area (CSA) were measured. NMJ was assessed by its morphometric characteristics (area, perimeter, and maximum diameter), using ImageJ software. Motor performance analyses were made using single pellet retrieval task performance test. Student's t-test was used for comparisons between groups. A significant decrease in all NMJ morphometric parameters was observed in the DM group compared with the C group. Results showed that DM generated NMJ retraction in muscles involved in a reaching task. These alterations are related to signs of muscular atrophy and to poor reaching task performance. In conclusion, induced DM caused NMJ retraction and muscular atrophy in muscles involved in reaching task performance. Induced DM caused significantly lower motor performance, especially in the final moments of evaluation, when DM compromised the tropism of the muscular tissue.


Subject(s)
Animals , Male , Rabbits , Rats , Task Performance and Analysis , Adaptation, Physiological/physiology , Diabetes Mellitus, Experimental/pathology , Neuromuscular Junction/pathology , Rats, Wistar , Diabetes Mellitus, Experimental/physiopathology , Neuromuscular Junction/physiopathology
2.
Braz. j. med. biol. res ; 51(9): e7394, 2018. tab, graf
Article in English | LILACS | ID: biblio-951756

ABSTRACT

The aim of this study was to compare muscle strength in male subjects with type 2 diabetes mellitus (DM2) with and without low plasma testosterone levels and assess the relationship between muscle strength, testosterone levels, and proinflammatory cytokines. Males (75) aged between 18 and 65 years were divided into 3 groups: control group that did not have diabetes and had a normal testosterone plasma level (>250 ng/dL), DnormalTT group that had DM2 with normal testosterone levels, and the DlowTT group that had DM2 and low plasma testosterone levels (<250 ng/dL). The age (means±SD) of the groups was 48.4±10, 52.6±7, and 54.6±7 years, respectively. Isokinetic concentric and isometric torque of knee flexors and extensors were analyzed by an isokinetic dynamometer. Plasma testosterone and proinflammatory cytokine levels were determined by chemiluminescence and ELISA, respectively. Glycemic control was analyzed by glycated hemoglobin (HbA1C). In general, concentric and isometric torques were lower and tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β plasma levels were higher in the groups with diabetes than in controls. There was no correlation between testosterone level and knee torques or proinflammatory cytokines. Concentric and isometric knee flexion and extension torque were negatively correlated with TNF-α, IL-6, and HbA1C. IL-6 and TNF-α were positively correlated with HbA1C. The results of this study demonstrated that muscle strength was not associated with testosterone levels in men with DM2. Low muscle strength was associated with inflammatory markers and poor glycemic control.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Young Adult , Testosterone/blood , Cytokines/blood , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/blood , Muscle Strength/physiology , Interleukin-6/blood , Tumor Necrosis Factor-alpha/blood , Inflammation Mediators/blood , Torque , Isometric Contraction/physiology , Knee
3.
Braz. j. med. biol. res ; 49(4): e5062, 2016. tab, graf
Article in English | LILACS | ID: biblio-951667

ABSTRACT

Type 2 diabetes mellitus (T2D) is a metabolic disease with inflammation as an important pathogenic background. However, the pattern of immune cell subsets and the cytokine profile associated with development of T2D are unclear. The objective of this study was to evaluate different components of the immune system in T2D patients' peripheral blood by quantifying the frequency of lymphocyte subsets and intracellular pro- and anti-inflammatory cytokine production by T cells. Clinical data and blood samples were collected from 22 men (51.6±6.3 years old) with T2D and 20 nonsmoking men (49.4±7.6 years old) who were matched for age and sex as control subjects. Glycated hemoglobin, high-sensitivity C-reactive protein concentrations, and the lipid profile were measured by a commercially available automated system. Frequencies of lymphocyte subsets in peripheral blood and intracellular production of interleukin (IL)-4, IL-10, IL-17, tumor necrosis factor-α, and interferon-γ cytokines by CD3+ T cells were assessed by flow cytometry. No differences were observed in the frequency of CD19+ B cells, CD3+CD8+ and CD3+CD4+ T cells, CD16+56+ NK cells, and CD4+CD25+Foxp3+ T regulatory cells in patients with T2D compared with controls. The numbers of IL-10- and IL-17-producing CD3+ T cells were significantly higher in patients with T2D than in controls (P<0.05). The frequency of interferon-γ-producing CD3+ T cells was positively correlated with body mass index (r=0.59; P=0.01). In conclusion, this study shows increased numbers of circulating IL-10- and IL-17-producing CD3+ T cells in patients with T2D, suggesting that these cytokines are involved in the immune pathology of this disease.


Subject(s)
Humans , Male , Adult , Middle Aged , Cytokines/blood , T-Lymphocyte Subsets/metabolism , Diabetes Mellitus, Type 2/blood , Reference Values , C-Reactive Protein/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Case-Control Studies , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , Statistics, Nonparametric , Lymphocyte Count , Diabetes Mellitus, Type 2/immunology , Flow Cytometry , Immunity, Cellular
4.
Braz. j. med. biol. res ; 47(9): 746-752, 09/2014. graf
Article in English | LILACS | ID: lil-719312

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF)-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C) and high-fat (HF) diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim) or a sedentary group (C-Sed and HF-Sed). Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved.


Subject(s)
Animals , Male , Activins/metabolism , Exercise Therapy , Follistatin/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/therapy , Physical Exertion , Body Weight , Blood Glucose/analysis , Disease Models, Animal , Diet, High-Fat/adverse effects , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Expression , Non-alcoholic Fatty Liver Disease/therapy , Obesity/metabolism , Random Allocation , Rats, Wistar , RNA, Messenger/metabolism , Swimming
5.
Braz. j. med. biol. res ; 47(5): 426-431, 02/05/2014. tab
Article in English | LILACS | ID: lil-709432

ABSTRACT

The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3 vs 135.1±25.2, P=0.005), peak heart rate (HRpeak: 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO2peak: 24.2±3.2 vs 18.9±2.8, P<0.001), and anaerobic threshold (VO2VT: 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels.


Subject(s)
Adult , Humans , Male , Middle Aged , Anaerobic Threshold , C-Reactive Protein/analysis , Diabetes Mellitus/blood , Exercise Test , Blood Pressure , Blood Glucose/analysis , Case-Control Studies , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Diabetes Mellitus/physiopathology , Heart Rate , Lung/metabolism , Metabolome , Oxygen Consumption , Statistics as Topic , Triglycerides/blood , Workload/statistics & numerical data
6.
Braz. j. med. biol. res ; 44(7): 713-719, July 2011. tab
Article in English | LILACS | ID: lil-595711

ABSTRACT

The present study estimated the prevalence of metabolic syndrome (MS) according to the criteria established by the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII) and the International Diabetes Federation (IDF) and analyzed the contribution of social factors in an adult urban population in the Southeastern region of Brazil. The sample plan was based on multistage probability sampling according to family head income and educational level. A random sample of 1116 subjects aged 30 to 79 years was studied. Participants answered a questionnaire about socio-demographic variables and medical history. Fasting capillary glucose (FCG), total cholesterol, high-density lipoprotein cholesterol (HDL-C), and triglycerides were determined and all non-diabetic subjects were submitted to the 75-g oral glucose tolerance test. Body mass index (BMI, kg/m²), waist circumference and blood pressure (BP) were determined. Age- and gender-adjusted prevalence of MS was 35.9 and 43.2 percent according to NCEP-ATPIII and IDF criteria, respectively. Substantial agreement was found between NCEP-ATPIII and IDF definitions. Low HDL-C levels and high BP were the most prevalent MS components according to NCEP-ATPIII criteria (76.3 and 59.2 percent, respectively). Considering the diagnostic criteria adopted, 13.5 percent of the subjects had diabetes and 9.7 percent had FCG ≥100 mg/dL. MS prevalence was significantly associated with age, skin color, BMI, and educational level. This cross-sectional population-based study in the Southeastern region of Brazil indicates that MS is highly prevalent and associated with an important social indicator, i.e., educational level. This result suggests that in developing countries health policy planning to reduce the risk of MS, in particular, should consider improvement in education.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Metabolic Syndrome/epidemiology , Socioeconomic Factors , Body Mass Index , Biomarkers/blood , Brazil/epidemiology , Cross-Sectional Studies , Cardiovascular Diseases/etiology , Educational Status , Glucose Tolerance Test , Lipoproteins, HDL , Prevalence , Sex Distribution , Urban Population , Waist Circumference
7.
Braz. j. med. biol. res ; 30(12): 1391-405, Dec. 1997.
Article in English | LILACS | ID: lil-212598

ABSTRACT

Temporal organization is an important feature of biological systems and its main function is to facilitate adaptation of the organism to the environment. The daily variation of biological variables arises form an internal time-keeping system. The major action of the environment is to synchronize the internal clock to a period of exactly 24 h. The lightdark cycle, food ingestion, barometric pressure, acoustic stimuli, scents and social cues have been mentioned as synchronizers or "zeitgebers". The circadian rhythmicity of plasma corticosteroids has been well characterized in man and in rats and evidence has been accumulated showing daily rhythmicity at every level of the hypothalamic-pituitary-adrenal (HPA) axis. Studies of restricted feeding in rats are of considerable importance because they reveal feeding as a major synchronizer of rhythms in HPA axis activity. The daily variation of the HPA axis stress response appears to be closely related to food intake as well as to basal activity. In humans, the association of feeding and HPA axis activity has been studied under physiological and pathological conditions such as anorexia nervosa, bulimia, malnutrition, obesity, diabetes mellitus and Cushing's syndrome. Complex neuroanatomical pathways and neurochemical circuitry are involved in feeding-associated HPA axis modulation. In the present review we focus on the interaction among HPA axis rhythmicity, food ingestion, and different nutritional and endocrine states.


Subject(s)
Humans , Animals , Circadian Rhythm/physiology , Eating/physiology , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Stress, Physiological/physiopathology
8.
Braz. j. med. biol. res ; 30(4): 465-9, Apr. 1997.
Article in English | LILACS | ID: lil-191384

ABSTRACT

This review presents historical data about atrial natriuretic peptide (ANP) from its discovery as an atrial natriuretic factor (ANF) to its role as an atrial natriuretic hormone (ANH). As a hormone, ANP can interact with the hypothalamic-pituitary-adrenal axis (HPA-A) and is related to feeding activity patterns in the rat. Food restriction proved to be an interesting model to investigate this relationship. The role of ANP must be understood within a context of peripheral and central interactions involving different peptides and pathways.


Subject(s)
Mice , Rats , Animals , Adrenal Glands/physiology , Adrenocorticotropic Hormone/biosynthesis , Atrial Natriuretic Factor/metabolism , Feeding Behavior/physiology , Hypothalamus/physiology , Pituitary Gland/physiology , Atrial Natriuretic Factor/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL